Role of TRPV1 and ASIC3 channels in experimental occlusal interference-induced hyperalgesia in rat masseter muscle.

نویسندگان

  • X X Xu
  • Y Cao
  • T T Ding
  • K Y Fu
  • Y Li
  • Q F Xie
چکیده

BACKGROUND Masticatory muscle pain may occur following immediate occlusal alteration by dental treatment. The underlying mechanisms are poorly understood. Transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channel-3 (ASIC3) mediate muscle hyperalgesia under various pathologic conditions. We have developed a rat model of experimental occlusal interference (EOI) that consistently induces mechanical hyperalgesia in jaw muscles. Whether TRPV1 and ASIC3 mediate this EOI-induced hyperalgesia is unknown. METHODS Rat model of EOI-induced masseter hyperalgesia was established. Real-time polymerase chain reaction, Western blot and retrograde labelling combined with immunofluorescence were performed to evaluate the modulation of TRPV1 and ASIC3 expression in trigeminal ganglia (TGs) and masseter afferents of rats after EOI. The effects of intramuscular administration of TRPV1 and ASIC3 antagonists on the EOI-induced hyperalgesia in masseter muscle were examined. RESULTS After EOI, gene expressions and protein levels of TRPV1 and ASIC3 in bilateral TGs were up-regulated. The percentage of ASIC3- (but not TRPV1-) positive neurons in masseter afferents increased after EOI. More small-sized and small to medium-sized masseter afferents expressed TRPV1 and ASIC3 separately following EOI. These changes peaked at day 7 and then returned to original status within 10 days after EOI. Intramuscular administration of the TRPV1 antagonist AMG-9810 partially reversed this mechanical hyperalgesia in masseter muscle. No improvement was exhibited after administration of the ASIC3 antagonist APETx2. Co-injection of AMG-9810 and APETx2 enhanced the effect of AMG-9810 administration alone. CONCLUSIONS Peripheral TRPV1 and ASIC3 contribute to the development of the EOI-induced mechanical hyperalgesia in masseter muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upregulations of P2X(3) and ASIC3 involve in hyperalgesia induced by cisplatin administration in rats.

The role of ion channels expressed in sensory neurons on mechanical and thermal hyperalgesia was examined in a rat model of cisplatin-induced peripheral neuropathy. The rats were injected with 3mg/kg of cisplatin intraperitoneally once per week for five consecutive weeks. The von Frey test, pin-prick test and plantar test were performed to examine any noxious sensitivity of the skin. The Randal...

متن کامل

Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia

BACKGROUND Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown. RESULTS Here we showed that a single intramuscular acid injection induced a priming effect on muscle nociceptors of mice. The primed muscle nociceptors were plastic and permitted the development of long-lasting chro...

متن کامل

The trophic effect of ciliary neurotrophic factor on injured masseter muscle in rat

Objective(s): Occlusal trauma is one of the most common forms of oral biting dysfunction. Long-term occlusal trauma could weaken the stomatognathic system; especially damage one’s masticatory muscle. Through using the rat model, this study investigated the trophic effect of ciliary neurotrophic factor (CNTF) on injured masseter muscle. Materials and Methods: Male Wistar rats (n=36) were random...

متن کامل

Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain

BACKGROUND Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. RESULTS Her...

متن کامل

Inflammatory pain memory facilitates occlusal interference-induced masticatory muscle hyperalgesia in rats.

BACKGROUND Patients with an orofacial pain history appear to be more susceptible to occlusal interference pain in dental practice for unknown reasons. Pain memory has a critical function in subsequent pain perception. This study aims to explore whether orofacial pain memory could affect the masticatory muscle pain perception for occlusal interference. METHODS Cross-injection of 2% carrageenan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of pain

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2016